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Chapter 10

INEQUALITIES

We deal only with real numbers in this chapter.

10.1 ELEMENTARY PROPERTIES

If a and b are real numbers, a < b (read "a is less that b") is defined to mean that b - a is
positive.  This definition and the following three properties can be used in proving elementary
properties of inequalities:

(1) Closure of the positive numbers.  If a and b are positive numbers, then a + b and ab
are positive numbers.

(2)  Trichotomy.  One and only one of the following is true for a given real number a: 
(a) a is zero; (b) a is positive; (c) -a is positive.

(3)  Roots.  If p is a positive number and n is a positive integer, then there is exactly one
positive number r such that rn = p.  (This number r is called the positive nth root of p or the
principal nth root of p.)

We can write the statement a < b in the form b > a (read "b is greater than a").  The

notation (read "a is less than or equal to b") means that either a < b or a = b,a # b

and is defined analogously.  The notation x < y < z or z > y > x means that x < y and y < zb $ a
are true simultaneously.

As mentioned is Section 8.4, the absolute value of a real number x is written as |x| and is
defined as follows:  If  then |x| = x; if x < 0, then |x| = -x.x $ 0,

Example 1.  Show that if x < y and y < z, that is x < y < z, then x < z.

Solution: If x < y then y - x = p, a positive number, and similarly y < z implies that 
z - y = q where q is positive.  Hence (z - y) + (y - x) = q + p, or

z - x = q + p.

Since z - x is the sum of the positive numbers q and p, it is positive by the closure property and
thus x < z by the definition.

Example 2.  Show that if x < y and p > 0, then px < py.

Solution: If x < y, then y - x is positive and, by closure, the product p(y - x) of positive
numbers is positive; that is, py - px is positive.  Now we have px < py by definition.
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Example 3.  Show that if m and n are integers and m < n, then n & m $ 1.

Solution: Since m < n, it follows that n - m is positive.  Since the difference of integers is

an integer and the least positive integer is 1, n - m is at least 1; that is n & m $ 1.

Problems for Section 10.1

R 1.  (a)  Show that if x < y, then x + z < y + z.
         (b)  Show that if x < y, then x - w < y - w.

R 2.  Show that if x < y and q < 0, then qx > qy.

R 3.  (a)  Show that if x > 0 or x < 0, then x2 > 0.
         (b)  Show that for all real x, x 2 $ 0.
         (c)  Show that 1 > 0.

R 4.  (a)  Show that if x > 0, then and if x < 0, then 1
x

> 0, 1
x

< 0.

        (b)  Show that if 0 < x < y or x < y < 0, then 1
x

> 1
y

.

R 5.  Show the following:

        (a)  If 0 < x < y and n is a positive integer, then x2n-1 < y2n-1.
        (b)  If x < 0 < y and n is a positive integer, then x2n-1 < y2n-1.
        (c)  If x < y < 0 and n is a positive integer, then x2n-1 < y2n-1.

R 6.  (a)  Show that if 0 < x < y and n is a positive integer, then x2n < y2n.
        (b)  Show that if y < x < 0 and n is a positive integer, then x2n < y2n.

R  7.  Show that if n is a positive integer and x2n-1 < y2n-1, then x < y.  (See Problem 5.)

R  8.  (a)  Show that if x2n < y2n and y > 0, then   (See Problem 6.)&y < ±x < y.
         (b)  Show that if x2n < y2n and y < 0, then y < ±x < &y.
         (c)  Use Parts (a) and (b) to show that if x2n < y2n, then &|y| < ±x < |y|.

R  9.  Prove the following by mathematical induction:

         (a)  If a1, a2, ..., an are positive, so is  a1 + a2 + ... + an.
         (b)  If a1, a2, ..., an are positive, so is a1a2...an.
         (c)  If a1 < b1, a2 < b2, ..., an < bn, then  a1 + a2 + ... + an < b1 + b2 + ... + bn.
         (d)  If 0 < a1 < b1, 0 < a2 < b2, ..., 0 < an < bn, then  a1a2...an < b1b2...bn.
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R 10.  Show that:

           (a)  x 2 & 2xy % y 2 $ 0.
           (b)  x 2 % y 2 $ 2xy.

           (See Problem 3.)

11.  Given that show that:x … y,

       (a)  x & y … 0.
       (b)  x 2 & 2xy % y 2 > 0.
       (c)  x 2 % y 2 > 2xy.

12.  Find all the integers n such that 2n2 - 3 < 8n.

13.  (a)  Given that 0 < a < b, show that a2 < ab < b2.
       (b)  Given that 0 < a < b, show that 3a2 < a2 + ab + b2< 3b2.

14.  (a)  Given that a < b, show that a < a % b
2

< b.

       (b)  Given that a < b, show that a < 2a % b
3

< a % 2b
3

< b.

15.  Given that 0 < x < y, show the following:

       (a)  x & 1
x

< y & 1
y

.

       (b)  
x

x % 1
< y

y % 1
.

16.  Given that  and that x + y > z, show that 0 < x # y # z x
x % 1

%
y

y % 1
> z

z % 1
.

17.  (a)  Given that  show that 0 < a < b # c, c > a % b
2

.

       (b)  Given that  show that 0 < a # b < c, c > a % b
2

.

       (c)  Given that  and a < c, show that 0 < a # b # c c > a % b
2

.

R 18.  Given that  and a1 < an, show that 0 < a1 # a2 # a3 # ÿ #an&1 # an

           an > (a1 + a2 + ... + an-1)/(n - 1).
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19.  Find integers a, b, and c such that 0 < a < b < c, a + b > c, and c is as small as possible.

20.  Let m and n be positive integers, and let 1, m, and n be the lengths of the sides of a                 
       triangle.  Show that m = n.

21.  Given that x > 0 and y > 0, show that (x + y)n > xn-1(x + ny) for all integers n $ 2.

22.  Given that  prove by mathematical induction that  for all        1 % x $ 0, (1 % x)n $ 1 % nx
       positive integers n.

23.  Prove that  for all positive real numbers x.2 x < 1

x % 1 & x

24.  Prove that  for all positive integers n.2
3

n n < 1 % 2 % 3 % þ % n

25.  Prove that  for all positive integers n.1 % 2 % þ % n < (4n % 3) n
6

26.  Use the fact that 1<b and x<y imply bx<by to prove the inequalities 2 # an < an%1 < 2

        for the sequence a1, a2, ... defined by  
   

a1 ' 2, a2 ' 2
a1, ÿ, an%1 ' 2

an, ÿ .

27.  Use the fact that 0 < b < 1 and x < y imply bx > by to prove the inequalities 

u1 < u2, u2 > u3, ÿ, u2k&1 < u2k, u2k > u2k%1,ÿ

       for the sequence u1, u2, ... defined by

u1 '
1

2
, u2 '

1

2

u1

, ÿ, un%1 '
1

2

un

, ÿ .

10.2  FURTHER INEQUALITIES

In this section we develop a technique for investigating the range of values assumed by a
quadratic function.  In subsequent work we shall assume as known the results of the examples in
Section 10.1 and of Problems 1 to 8 in Section 10.1.

Example:  Let f(x) = ax2 + bx + c, where a, b, and c are real numbers and  Let D bea … 0.

the discriminant b2 - 4ac.  Show that if D > 0, then f(x) takes on both positive and negative
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values.

Solution:  Completing squares, we obtain

f(x) ' ax 2 % bx % c '
4a 2x 2 % 4abx % 4ac

4a

'
4a 2x 2 % 4abx % b 2 & (b 2 & 4ac)

4a

'
(2ax % b)2 & D

4a
.

If x = -b/2a, 2ax + b = 0, and so f(-b/2a) = -D/4a.  We first consider the case in which a > 0.  This
and D > 0 imply that f(x) = -D/4a < 0.  We wish to show that f(x) also takes on positive values. 

We consider values of x greater that  Then(&b% D)/2a.

x > &b % D
2a

2ax > &b % D
2ax % b > D > 0

(2ax % b)2 > D
(2ax % b)2 & D > 0

f(x) '
(2ax % b)2 & D

4a
> 0.

Thus we have proved the desired result for the case a > 0.  If a < 0, let g(x) = -ax2 - bx - ac. 
Since the coefficient of x2 in g(x) is positive, g(x) takes on both positive and negative values by
the previous case.  Then so does f(x) = -g(x).

Problems for Section 10.2

1.  Let a and b be real numbers.  Prove that  and that  if and only if a 2 % b 2 $ 0 a 2 % b 2 ' 0
     a = b = 0.

2.  Let c1, c2, ..., cn be real numbers.  Prove that and  if c 2
1 % c 2

2 % þ % c 2
n $ 0 c 2

1 % c 2
2 % þ % c 2

n ' 0

     and only if each ci = 0. 

3.  Let f(x) = ax2 + bx + c, where a, b, and c are real numbers and a > 0.  Let D be the                   
     discriminant b2 - 4ac.  Show the following:
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     (a)  If D < 0, then f(x) > 0 for all x, and f(x) = 0 has no real roots.
     (b)  If D = 0, then  for all x, and f(x) = 0 has one real root.f(x) $ 0

     (c)  If D > 0, then f(x) < 0 for   f(x) > 0 for  or          &b & D
2a

< x < &b % D
2a

, x < &b & D
2a

             and f(x) = 0 has two real roots.x > &b % D
2a

,

4.  Let f(x) = ax2 + bx + c, where a, b, and c are real numbers and a < 0.  Let D = b2 - 4ac.  Show  
     the following:

     (a)  If D < 0, then f(x) < 0 for all x, and f(x) = 0 has no real roots.

     (b)  If D = 0, then  for all x, and f(x) = 0 has one real root.f(x) # 0

     (c)  If D > 0, then f(x) > 0 for   f(x) < 0 for  or          &b & D
2a

> x > &b % D
2a

, x > &b & D
2a

             and  f(x) = 0 has two real roots.x < &b % D
2a

,

*5.   Let F1, F2, F3, ... be the sequence of Fibonacci numbers 1, 1, 2, 3, 5, ... and let Rn = Fn+1/Fn for
        n = 1, 2 , 3, ... .  Do the following:

     (a)  Show that Rn%1 ' 1 %
1
Rn

.

     (b)  Prove that R2n-1 < R2n+1 < R2n and  R2n+1 < R2n+2 < R2n for all positive integers n, that is, that  
           R1 < R3 < R5 < R7 < ... < R8 < R6 < R4 < R2.

10.3  INEQUALITIES AND MEANS

We recall that the arithmetic mean of a1, a2, ..., an is

a1 % a2 % þ % an

n

and the geometric mean is

n
a1a2þan .

We restrict a1, ..., an to be positive in discussing geometric means, since otherwise the definition
might express the mean as an even root of a negative number.

We shall use An for the arithmetic mean of a1, a2, ..., an and Gn for the geometric mean.
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THEOREM: Let a1, a2, ..., an be positive real numbers.  Then

An $ Gn

that is,

a1 % a2 % þ % an

n
$

n
a1a2þan .

Proof: We proceed by mathematical induction.  When n = 1, it is clear that A1 = a1 and G1 = a1. 
Hence A1 = G1, and the theorem holds for n = 1.

We next prove it for n = 2.  Since a1 and a2 are positive,  and  exist in the reala1 a2

number system by the roots property of Section 10.1, and so

a1 & a2
2 $ 0

by Problem 3(b) of section 10.1.  It follows that

a1 & 2 a1 a2 % a2 $ 0

a1 % a2 $ 2 a1 a2

a1 % a2

2
$ a1a2 .

This is precisely the statement  of the theorem for n = 2.A2 $ G2

We now assume the inequality true for n = k, that is, we assume that  and withAk $ Gk ,

this as a basis shall prove that Ak%1 $ Gk%1.

If a1 = a2 = ... = ak+1 then Ak+1 = a1,Gk+1 = a1, and so   It remains toAk%1 $ Gk%1.

investigate the case in which the ai are not all equal.  Without loss of generality, we may assume
that the ai are numbered so that

0 < a1 # a2 # a3 # þ #ak%1.

The fact that the a’s are not all equal implies that a1 < ak+1.  It now follows from Problem 18 of
Section 10.1 that ak+1 > Ak.  Since

Ak '
a1 % a2 % þ % ak

k
we have kAk = a1 + a2 + ... + ak, and hence
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Ak%1 '
a1 % a2 % þ % ak % ak%1

k % 1

'
kAk % ak%1

k % 1

'
(k % 1)Ak % (ak%1 & Ak)

k % 1

'Ak %
ak%1 & Ak

k % 1
.

Let (ak+1 - Ak)/(k + 1) = p.  We have seen above that ak+1 > Ak; this implies that p > 0.  Now Ak+1 =
Ak + p.  We raise both sides of this equality to the (k + 1)th power, obtaining

(Ak%1)
k%1 ' (Ak % p)k%1

' (Ak)
k%1 % (k % 1)(Ak)

kp %
k % 1

2
(Ak)

k&1p 2 % þ % p k%1.

Since p > 0 and Ak > 0, all the terms in the binomial expansion on the right side are positive. 
There are k + 2 terms in this expansion; hence there are at least 4 terms.  Now (Ak+1)

k+1 is greater
than the sum of the first two terms:

(Ak+1)
k+1 > (Ak)

k+1 + (k + 1)p(Ak)
k.

Since (k + 1)p = ak+1 - Ak, this becomes

(Ak%1)
k%1 > (Ak)

k%1 % ak%1(Ak)
k & (Ak)

k%1

(Ak%1)
k%1 > ak%1(Ak)

k.

Having assumed above that we now haveAk $ Gk,

(Ak%1)
k%1>ak%1(Ak)

k$ak%1(Gk)
k'ak%1(a1a2þak)

(Ak%1)
k%1>(Gk%1)

k%1.

From Problems 7 and 8, Section 10.1, it follows that Ak+1 > Gk+1, and the theorem is proved.
We have actually proved more than is stated in the theorem; we have shown that An > Gn

unless all the ai are equal.
There is a third type of mean that is used quite often: the harmonic mean.  The harmonic

mean of numbers a1, a2, ..., an, none of which is zero, is given by

Hn '
n

1
a1

%
1
a2

% þ %
1
an

.
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In a harmonic progression, defined as a progression of the form

1
a

, 1
a % d

, 1
a % 2d

, ÿ, 1
a % (n & 1)d

each term, except the end ones, is the harmonic mean of its two adjacent terms; that is, if a1, a2,
..., an are in harmonic progression, then

2
1

ak&1

%
1

ak%1

' ak.

The proof is left to the reader.

10.4  THE CAUCHY-SCHWARZ INEQUALITY

Another famous inequality is given various names in different texts, although in the United
States it is usually referred to as the Cauchy - Schwarz Inequality (named for Augustin Cauchy,
1789-1857; and Hermann Amandus Schwarz, 1843-1921).  Some call it the Schwarz Inequality,
while others, including the Russians, call it the Cauchy-Buniakowski Inequality.

THEOREM: Let a1, a2, ..., an and b1, b2, ..., bn be any real numbers. Then 

(a 2
1 % a 2

2 % þ % a 2
n )(b 2

1 % b 2
2 % þ % b 2

n ) $ (a1b1 % a2b2 % þ % anbn)
2,

that is,

'n
i'1

a 2
i 'n

i'1
b 2

i $ 'n
i'1

aibi

2

.

Proof:  We define a polynomial function f(x) by

f(x) = (a1x + b1)
2 + (a2x + b2)

2 + ... + (anx + bn)
2.

Clearly f(x) is positive or zero for all real numbers x, since it is a sum of squares.  Now

f(x) ' (a 2
1 x 2 % 2a1b1x % b 2

1 ) % (a 2
2 x 2 % 2a2b2x % b 2

2 ) % þ % (a 2
n x 2 % 2anbnx % b 2

n )

' (a 2
1 % a 2

2 % þ % a 2
n )x 2 % 2(a1b1 % a2b2 % þ % anbn)x % (b 2

1 % b 2
2 % þ % b 2

n ).

Let  so that a 2
1 % a 2

2 % þ % a 2
n ' A, a1b1 % a2b2 % þ % anbn ' B, and b 2

1 % b 2
2 % þ % b 2

n ' C



103

f(x) = Ax2 +2Bx + C.  Since for all x, the discriminant since D > 0 implies thatf(x) $ 0 D # 0,
f(x) is sometimes positive and sometimes negative.  (See Section 10.2.)  Now

 D ' (2B)2 & 4AC ' 4B 2 & 4AC # 0.

Hence   Translating this back into our original notation, weB 2 & AC # 0, and so AC $ B 2.
have the Cauchy-Schwarz Inequality:

(a 2
1 % a 2

2 % þ % a 2
n )(b 2

1 % b 2
2 % þ % b 2

n ) $ (a1b1 % a2b2 % þ % anbn)
2.

Examination of the above proof shows that 

j
n

i'1

a 2
i j

n

i'1

b 2
i ' j

n

i'1

aibi

2

if  and only if there is a fixed number x such that aix + bi = 0 for all i, that is, the ai and bi are
proportional.

The hypothesis for the inequality on the arithmetic and geometric means is that the
numbers are all positive.  The numbers in the Chauchy-Schwarz Inequality need not be positive. 
In fact, 

j
n

i'1

a 2
i j

n

i'1

b 2
i

is unaltered by changes in the signs of the ai and bi, while 

j
n

i'1

aibi

2

is largest when all the signs are positive.

Problems for Sections 10.3 and 10.4

1.  Given that a, b, c, d, x, y, z, and w are positive real numbers, prove the following 
     [from (a) to (z)]:

     (a)  If x + y = 2, then xy # 1.
     (b)  If xyz = 1, then x % y % z $ 3.
     (c)  If xyz = 1, then 

1
x
%

1
y
%

1
z
$ 3.
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     (d)  If x + y + z = 1, then 1
x
%

1
y
%

1
z
$ 9.

     (e)  
a % b % c

3

3

$ abc.

     (f)  (a % b % c % d)4 $ 256abcd.

     (g)  (x % y)(x & y)2 $ 0.

     (h)  x 3 % y 3 $ x 2y % xy 2.

     (i)  x 4 % y 4 $ x 3y % xy 3 $ 2x 2y 2.

     (j)  x 5 % y 5 $ x 4y % xy 4 $ x 3y 2 % x 2y 3.

     (k)  x % 1
x

$ 2.

     (l)  
x
y
%

y
z
%

z
x
$ 3.

     (m)  x
y
%

x
z
%

y
z
%

y
x
%

z
x
%

z
y
$ 6.

     (n)  xy(x % y) % yz(y % z) % zx(z % x) $ 6xyz.

     (o)  
x
y
%

y
z
%

z
w
%

w
x

$ 4.

     (p)  a % b % c $ bc % ca % ab.

     (q)  3(a % b % c % d) $ 2 ab % ac % ad % bc % bd % cd .
     (r)  (x % y)(y % z)(z % x) $ 8xyz.
     (s)  [(x % y)(x % z)(x % w)(y % z)(y % w)(z % w)]2 $ 4096(xyzw)3.
     (t)  If x + y + z = 1, then (1 & z)(1 & x)(1 & y) $ 8xyz.

     (u)  If x + y + z = 1, then 1
x
& 1

1
y
& 1

1
z
& 1 $ 8.

     (v)  (y % z % w)(x % z % w)(x % y % w)(x % y % z) $ 81xyzw.
     (w)  If x + y + z + w = 1, then (1 & x)(1 & y)(1 & z)(1 & w) $ 81xyzw.
     (x)  (ab % xy)(ax % by) $ 4abxy.

     (y) [(ab % cd)(ac % bd)(ad % bc)]2 $64(abcd)3.
     (z) If x + y = 1, then x 2 % y 2 $ 1

2
.

2.  Given that a, b, and c are positive real numbers, show that

(a 2b % b 2c % c 2a)(a 2c % b 2a % c 2b) $ 9a 2b 2c 2.

      Is this true for all real numbers a, b, and c?

3.  Show that if a1, a2, ..., an are positive real numbers, then
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a1

a2

%
a2

a3

%
a3

a4

% þ %
an&1

an

%
an

a1

$ n.

 4.  Let a1, a2, ..., an-1, an be positive, and let ai, aj, ..., ah, ak be a permutation of these n numbers.   

      Show that 
a1

ai

%
a2

aj

% þ %
an&1

ah

%
an

ak

$ n.

 5.  Let a, b, x and y be real  numbers, with a2 + b2 = 1 and x2 + y2 = 1.  Show that:

       (a)  (ax % by)2 # 1.

       (b)  (ax & by)2 # 1.
       (c)  &1 # ax % by #1.
       (d)  &1 # ax & by #1.

 6.  Let a, b, c, x, y, and z be real numbers with a2 + b2 + c2 = 1 = x2 + y2 + z2.  Show that:

      (a)  (ax % by % cz)2 # 1.
      (b)  &1 # ax % by % cz # 1.

 7.  Let a, b, c, d, and e be real numbers.  Show the following:

      (a)  a 2 % b 2 $ 2ab.

      (b)  a 2 % b 2 % c 2 $ bc % ac % ab.

      (c)  3(a 2 % b 2 % c 2 % d 2) $ 2(ab % ac % ad % bc % bd % cd).
      (d)  2(a 2 % b 2 % c 2 % d 2 % e 2) $ a(b % c % d % e) % b(c % d %e) % c(d % e) % de.

 8.  Show that  for all real numbers a and b.a 2 % b 2 % 1 $ b % a % ab

 9.  Show that if x and y are positive real numbers with x + y = 1, then

x %
1
x

2

% y %
1
y

2

$ 25
2

.

10.    Show that if x, y and z are positive real numbers with x + y + z = 1, then

x %
1
x

2

% y %
1
y

2

% z %
1
z

2

$ 100
3

.

11.  Let a, b, and c be positive real numbers.  Show that 3(bc % ca % ab) # a % b % c.
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12.  Let a, b, c, and d be positive.  Show that

2 6(ab % ac % ad % bc % bd % cd) # 3(a % b % c % d).

13.  Let An, Gn, and Hn be the arithmetic, geometric, and harmonic mean, respectively, of        
positive numbers a1, a2, ..., an.  Assuming  show that An $ Gn, An $ Gn $ Hn.

14.  Show that n n $ 1@3@5þ(2n & 1).

15.  Show that  for all positive integers n and k.(1k % 2k % þ % n k)n $ n n(n!)k

16.  Show the following:

       (a)  (n % 1)n $ 2@4@6þ(2n).

       (b)   for all positive integers n.n n n % 1
2

2n

$ (n!)3

17.  Show the following:

       (a)  n@1 % (n & 1)@2 % (n & 2)@3 % þ % 2(n & 1) % 1@n '
n % 2

3
.

       (b)  
(n % 1)(n % 2)

6

n/2

$ n!.

18.  Show the following:

       (a)  1 + 2 + 22 + ... + 2n-1 = 2n - 1.

       (b)   for all positive integers n.2n $1 % n 2
n&1

19.  Do the following:

       (a)  Show that 1 %
1

2
%

1

3
% þ %

1

n

n

$ n n

n!
.

       (b)  Show that  for all positive integers n.n % 1 & n > 1

2 n % 1

       (c)  Show by mathematical induction that 2 n > 1 %
1

2
%

1

3
% þ %

1

n
.
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       (d)  Show that n! >
n
4

n

.

20  Show that A
n

k ' 0

n
k

# 2n & 2
n & 1

n&1

for n $ 2.

21.  Do the following:

       (a)  Find the arithmetic mean of a1, a2, ..., a100, given that a1 = 1 and
              a2 = a3 = ... = a100 = 100/99.

       (b)  Prove that 100
99

99/100

<
101
100

.

       (c)  Prove that 1%
1
99

99

< 1%
1

100

100

.

       (d)  Prove that  for all positive integers n.1%
1
n

n

< 1%
1

n % 1

n%1

22.  Do the following:

       (a)  Find the arithmetic mean of a0, a1, a2, ..., a100, given that a0 = 1 and
              a1 = a2 = ... = a100 = 99/100.

       (b)  Prove that 100201 > 99100@101101.

       (c)  Prove that  for all positive integers n.1%
1
n

n%1

> 1%
1

n % 1

n%2

23.  Do the following:

       (a)  Find the arithmetic and geometric means of the roots of x4 - 8x3 + 18x2 - 11x + 2 = 0,        
             given that all the roots are positive.

       (b)  Given that all the roots of x6 - 6x5 + ax4 + bx3 + cx2 + dx + 1 = 0 are positive, find a, b, c, 
              and d.

       (c)  Find all the roots of x11 - 11x10 + ... - 1 = 0, given that each root is positive.
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24.  Given tht a, b, and c are the lengths of the sides of a triangle, show that 

3(bc % ac % ab) # (a % b % c)2 < 4(bc % ac % ab).

25.  For all real numbers a, b, c, x, y, and z show that 

a 2 % b 2 % c 2 % x 2 % y 2 % z 2 $ (a % x)2 % (b % y)2 % (c % z)2.

26.  For all real numbers a1, a2, ..., an, b1, b2, ..., bn, show that 

a 2
1 % a 2

2 % þ % a 2
n % b 2

1 % b 2
2 % þ % b 2

n $ (a1 % b1)
2 % (a2 % b2)

2 % þ % (an % bn)
2.

27.  Show that if a and b are positive real numbers and m and n are positive integers, then

m mn n

(m % n)m%n
$ a mb n

(a % b)m%n
.

28.  Let Fn and Ln be the nth Fibonacci and nth Lucas number, respectively.  Prove that 

F4n

n

n

> L2L6L10ÿL4n&2

       for all integers n $ 2.


